PHYSICAL REVIEW E VOLUME 60, NUMBER 1 JULY 1999

Thermodynamics of quantum dissipative many-body systems
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We consider quantum nonlinear many-body systems with dissipation described within the Caldeira-Leggett
model, i.e., by a nonlocal action in the path integral for the density matrix. Approximate classical-like formulas
for thermodynamic quantities are derived for the case of many degrees of freedom, with general kinetic and
dissipative quadratic forms. The underlying scheme ispilme-quantum self-consistent harmonic approxima-
tion (PQSCHA, equivalent to the variational approach by the Feynman-Jensen inequality with a suitable
quadratic nonlocal trial action. A low-coupling approximation permits us to get manageable PQSCHA expres-
sions for quantum thermal averages with a classical Boltzmann factor involving an effective potential and an
inner Gaussian average that describes the fluctuations originating from the interplay of quanticity and dissipa-
tion. The application of the PQSCHA to a quantupfi chain with Drude-like dissipation shows nontrivial
effects of dissipation, depending upon its strength and bandwigflt63-651X99)08707-3

PACS numbdps): 05.30—d, 05.40-a, 64.60.Cn

[. INTRODUCTION to the most common case of translation-invariant systems. In
Sec. Ill the kink-bearing quantug? chain is considered and
Historically, the classical effective potential was intro- the corresponding effective classical potential is explicitly
duced in 1955 by Feynmafil] for treating the polaron, derived. Finally, results for some thermodynamic quantities
which can be regarded as an electron subjected to a “dissPf this system are collected and illustrated in Sec. IV.
pative” interaction with the lattice phonons. A remarkable
improvement of Feynman’s effective potential in the nondis- . PRSCHA FOR DISSIPATIVE MANY-BODY SYSTEMS
sipative cas¢2,3] was obtained4,5] three decades later by
introducing a quadratic term and an extra variational param-
eter in the trial action used to approximate the partition func- L€t us consider a general system withdegrees of free-
tion. dom, i.e., canonical coordinate and momentum operajors

Several applications of the improved method to con-=1{Qi}i=1,...n @ndP={Pi}i=1,... N, With the commutation
densed matter systems have demonstrated its usefubeess relations[q;,p;]=idj; (we setfi=1 from now on), and de-
[6,7], and references therginThe fact that it is also suitable scribed by a Hamiltonian with a quadratic kinetic energy and
to treat open systems was used in previous stUdig§ ba- @ nonlinear potential term,
sically aimed to obtain a classical-like expression for the free
energy in the case of strictly linear diss_ipati[dm]; the case F= ltﬁAZﬁ_'_V(a). 1)
of nonlinear dissipation was also consideféd]. 2

In a previous papell2] we used the method, also called s P , . ,
the pure-quantum self-consistent harmonic approximation! "€ MatrixA®={Ajj} is symmetric, real, and pOSItlyle defi-
(PQSCHA after its generalization to phase-space Hamilto-Nit€; thus its positive square roét and its inverseA™" do
nians[13,6], to obtain the density matrix of a single particle exist; it |§ convyt,enlent to define its determinant in terms of a
with nonlinear interaction and with dissipation describedPOSitive “mass”m,
through the Caldeira-LeggetiCL) model [14,10. In the detA2=m—N. ©
present work we deal with many degrees of freedom, facing
the problem of making the method suitable for actual appli- In order to introduce dissipation in this system, further
cations to condensed matter systems. information is needed about the physics of the dissipation

In Sec. Il we develop the general method, as well as théenechanism. We assume this to be described through the CL
necessary low-coupling approximation and its specializatiomodel, i.e., introducing an environmefor damping bathof

harmonic degrees of freedom, but still one can think of dif-
ferent kinds of environmental coupling. For instance, several

A. Path integral for the density matrix

*Electronic address: cuccoli@fi.infn.it damping baths coupled with the coordinates can be used to
"Electronic address: fubini@fi.infn.it describe different dissipation mechanisms, and it can be even
*Electronic address: tognetti@fi.infn.it necessary to introduce infiniteorrelated or uncorrelated
$Electronic address: vaia@ieq.fi.cnr.it baths; since there are many “particles” in the system, it may
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happen that all particles are coupled with one single environ- _ q' o

ment, so introducing correlations via dissipation, or —inthe ~ p(d".0";0)= f " Dla(w)]8(@—q[a(u e W, (7)
simplest physical model — that there are infinite identical a

independent baths, one for each particle. We just mention _

here that — although here we stick with coordinate couplingvhereq [g(u)]=(8) ~*f§duq(u) is the average-point func-

— it is also possible to couple the environment with mo-tional. The PQSCHA is based on approximating the action
menta [15], or with both coordinates and momenta: the S[q(u)] with a trial actionSy[ g(u)] that is quadratic so that
framework we are going to describe can also be generalizelthe path integral can be evaluated analytically, and contains
to these cases. parameters that can be optimized. It is to be remarked that

To be able to access all the relevant thermodynamic quarenly paths with a fixedy appear in the path integrérl), so
tities and not only the macroscopic ones, the full densitythatSe[q(u)] (i.e., the parameters appearing theyeian de-
matrix p(q’,q’) is needed, as the knowledge of the only pend ong: one deals then with a much more general class of
diagonal partp(qg,q) does not permit direct calculation of trial actions than one could obtain taking sensible approxi-
averages of momentum-dependent observables, as the averations of the Hamiltonian operator — as, for instance, in
age kinetic energy. the usual self-consistent harmonic approximat®gGHA) —

The density matrix at the equilibrium temperatufe and a better approximation is then to be expected; the price is
=B~ 1 in the coordinate representation is expressed by Feythat the classical-like integral overis left over. We define
nman’s path integral as then the trial action by replacing(q) in the action(4) with

a trial quadratic “potential,”

/! 'y — /" - H ! q” -
p(d',q')=(q"|e”#Telq >=L, Dlg(u)Je” AW (3) .
. . Vo(@=w(@)+5'(a-g)B*a)(d-a). (8
whereH,, is the sum of Eq(1) and the Hamiltonians for the

bath and the system-bath coupling, and the average with re-

spect to the bath variabléssually called “tracing out) is  The parameters are the scaigm) and theN(N+1)/2 com-
understood 10]. The path integration is defined as a sumponents of the symmetric real mati®é(q). These are to be
over all pathsq(u), with ue[0,8], q(0)=q’, and d(8)  optimized in such a way that the trial reduced density
=q". po(9’,q';q) at best approximatesg(q’,q’;q), for each value
The general CL Euclidean action for the system, obtaineef q.
after having traced out all environmental variables, takes the The off-diagonal elements of the trial reduced density are
form rather tricky to evaluate in the presence of dissipation. In-
1 deed, the general method of calculating the minimal action
Tt -2/ cannot be usedthe classical path being the solution of
2 A(WA () +V(g(w) infinite-order equations of motignwhile the method of Fou-
. rier expansion of the paths can be applied only to integrals
_ Jﬁd—u‘(q(u)—q(u’)) over closed path&utq’#q’ for the off-diagonal part of the
4 density matriy. However, the latter method may still be used
if one closes the paths in a small interval and separately
(4) evaluates the corresponding contribution. Explicitly:

B
S[q(U)]=fO du

XK(u=u")(g(u)—q(u"))

where the kernel matrik(u) ={K;;(u)} is a real symmetric po(q’,q';9) = lim 1 35 Dl g(u)]e™ Sola(w]

matrix that replaces the scalar kerrdlu) of the single- e—0 e

particle casd10]; as a function ofu it keeps its symmetry —

and periodicity, K(u)=K(—u)=K(8—u), and satisfies X8(q—qlaq(u)])

fgduK(u)=0. In the case oN independent identical envi- X 8(q(e)—q)dq(B—e)—q"). 9)

ronmental baths coupled to each coordingteone simply

has a diagonal kernel: ) .
Here the integral is over altlosedpaths{q(u)|ue[0,8]}

K(u)=k(u). (5) satisfying the constraintg(e)=q' andq(8—¢)=("; F,. is
the integral over the open patHg(u)|ue[—e,e]} (the
We will consider this case for the application shown in Secrange[ 8—¢,] is periodically mapped ontp—&,0]) with
Il end pointsq(—&)=q" andq(¢)=q’. In the limit of small
e,F, becomes the free-particle density matrix,
B. General PQSCHA

As suggested by Feynm4a8l], the path integral4) can be
rearranged by summing over classes of paths that share the Fe=
sameaverage poing:

m

N/2
) e~ 'CAT2U(46) +0(s) (10)
4me

where{=q"—q’. The paths in Eq(9) can thus be Fourier

p(q”,q’)zf dg p(q",q';0), (6) expanded,
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[

qU)=q+2>, (X,CoSv u+y,sinv,u). (11)
n=1

vp=2mn/pB are the Matsubara frequencies, the zeroth com-
ponent is justy. The measure of the path integral becomes

(3]
m |\ N2 ~[mBri\N
f}g D[q(U)]H(m) f danl]l ( — f dxadyn,
(12
and the trial action takes the form
Sola(w)]=Bw(@) + B 2, [*a@rxot'ynPoynl, (13)
where the matrice®,={®, ;;} are given by
®,(q)=v2A 2+ B%(q) +K, (14)

andK, is the Matsubara transform of the kernel mati),
B
anf du K(u) cosv,u. (15
0

The calculation of the reduced dens{8) is reported in the

THERMODYNAMICS OF QUANTUM DISSIPATIVE MANY-. ..

233
Verl() =w(q) + B~ (0, (21)
with
<, detd®,(q)
pla=2, U (22

To implement the PQSCHA we requifé3,6] that the
parameters of the trial action are such that they matchpghe
averages of the original and the trial potential and of their
second derivatives:

1
w(g)=((V(a+§)) - 5TIBAQ)C(9)], (23

Bﬁ(Q)=(<0qi6qu(Q+ ))- (24)
The second equation together with Efj9) self-consistently
determines the solution fd(q) and C(q).

C. Low-coupling approximation

The above framework is still complicated, due to the de-
pendence om that requires a solution of Ed24) for any
value ofg, and also due to the matrix form of E(L9). The
first difficulty can be overcome by the so-callddw-

Appendix; furthermore, it is apparent that no confusioncoupling approximatioiLCA) and consists in expanding the
arises if wesuppress the bafrom g in the rest of the paper. NXN matrix B(g) so as to make the renormalization coeffi-
The simplest way for writing the final result is to give the cients, and hence also the Gaussian aver&ggs indepen-

expression of the thermal average of a generic obsen@ble dent of the configuration,

in terms of its Weyl symbo[16,17,13, whose definition is

Op.a= [ dze'™ (a+ 140la-§ 16
Indeed, using the trace property of Weyl symbols,
0= [ 9 baopa an
r = 1 1 1
P (Zw)Np p.a)d(p.q

In order to do this it is useful to introduce the differential
operator

1
Al@=5 2 Cy(d) dqdq, (25
so that one can write, for any functidf(q),
((F(a+8))=e*@ F(q), (26)

one finds the fundamental formula that approximates quarivhere the derivatives are assumedt to operate on the
tum averages by means of a classical-like expression with afgnormalization coefficient€;;(q). In view of Eq.(23) this

effective potentiaV 4,
R 1 m N/2
(0)= z(m) f dg e AVerD((O(p,q+ £))),
(18

where(( )) is the Gaussian average over the variaplesd
& determined byp, as reported in Eq(A14); this average

can be uniquely defined through its nonzero moments

((£'§))=C(a) and((p 'p))=A(q), with

2 [ee]
Cla=5 2 '), (19
n=1
A(q)% 2 ATAT-Se QAT (20

whose components are tenormalization coefficientghe
effective potential reads

allows us to express the effective potential) as
Ve @=[1-A(q)]1e*OV(g)+ B~ u(a). (27

Expanding from the configuratiogy that minimizesVx(q),

i.e., setting B?(q)=B?+ 6B?(qg) with the convention of
dropping the fixed argumerd,, i.e., B=B(qy), from the
definition (14) one has

det®,(q) =def{ ®,+ 6B?(q)]=detd {1+ Tr[®, *56B?(q)]}
(28)
and for the last term of the effective potent{all) this gives
Bt u(q)=B"tu+ 3T CSBX(q)]
=B 'u+A[e*OV(g) —e*V(g)], (29
so that Eq(27) becomes the LCA effective potential,

Ver(a) =€*V(q) — Ae*V(ap) + B 1w, (30
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where the whole dependence gris contained in the first We remark that the renormalization coefficients;;
term e* V(q) ={(V(g+ &))), calculated with the renormal- =((&;¢;)) describe not only the pure quantum fluctuations

ization coefficients independent of the configuratidd,

[6] but also those arising from the dissipative coupling; on

=C(qo)- It is useful to note that for this reason one canthe other hand, thé;;=((p;p;)) includes also the classical

simply write, from Eq.(24),
Bfj = dg,0q, Ver( o). (31)

It often occurs that the indicasj, . . .

refer to the sites of

fluctuations — the sum in Eq37) contains indeed thae
=0 term — since for a standard Hamiltonian like Ed)
they are Gaussian and there is no reason for keeping them
separated.
The partition function and thermal averages are then to be

a lattice, whose symmetries can be very helpful in order tevaluated by means of E(L8), where, of course, the effec-
simplify the analysis, provided that the minimum configura-tive potential and the double-bracket average are to be un-

tion of V() shares the same property. In gen@%(q) has
no particular symmetries, due to its dependence:diut the

derstood as the LCA ones. Note that, since the LA do
not depend om, averages of observables involving only the

LCA matrix B>=B?(qy) is likely to have the same symme- momenta are trivially evaluated 49(p))=((O(p))). In the

tries of the Hamiltonian if the minimum configuraticap,
shares them.

next section we illustrate the method by applying the above
results to a model nonlinear many-body system.

Let us consider the most frequent case of translation sym- Before moving to the application of the method, we ob-

metry: if the Hamiltonian and the dissipation kerk&lL) are

serve that the effects of dissipation are always represented by

translation invariant, the calculations are greatly simplifiedthe appearance of the ternks,. This can be seen in the

Then all the matrices are diagonalizézpart from internal
degrees of freedom, which we do not consider hérgean
(orthogonal Fourier transformJ={U,;}:

m;l 5kkr=i2j UkiUkrinzj y (32)
mywi 6kkf=§ UyiUyjBf (33)
m Ko 5kk’:i2j UiV iKnij » (34

general formalism, in Eqs19), (20), and (22), whereK,
appears through Ed14), as well as in the LCA, in Egs.
(35—(38). The nondissipative limit13,6] is therefore recov-
ered settindk, ,=0 in all these equations: the infinite series
can be summed up exactly 8,02/ (v3+ w?)=f cothf,
wheref= Bw/2, and the familiar expressions are obtained.

lll. DISSIPATIVE ¢* CHAIN
A. The model

The nondissipativep* chain has already been studied
[18,6] by the effective potential method. The model consists
of a one-dimensional array of particles with a nearest-

where we used “familiar’ notations in terms of masses andneighbor harmonic interaction and a quartic on-site interac-
frequencies, in order to compare with the known expressionion. It can be viewed as the discretized version of a con-

for one single degree of freeddr?]. It is immediately seen

from Eq. (2) that IT,m,=m". Taking the LCA matrix®,

= vﬁA*2+ B?+ K, the last term of the effective potential en-

tails the quantity

(39

The renormalization coefficients of Eq&l9) and (20) be-
come, for the Fourier transformed variablgs- >;U,;&; and

Pi=ZiUyipi

[

Cuk =((€kékr)) = Skir , (36)

BM i1 12+ 0+ Ko i

o 2
My o+ Kn i
Akkr:<<pkpk'>>:5kkf§n2 ik
=T% Vn k n,k

(37

tinuum nonlinear field theory, and is described by the
(undampeg action

- ,
a4 (gi—0i-1) 9
7+T+Q v(g) |, (39

118
Sz—f dua>,
gJo i

wherea is the chain spacind() is the gap of the bare dis-
persion relationg is the quantum coupling, and q;) is the
local nonlinear potential,

1

v(g)= 8(1—q2)2, (40)

which is symmetric and has two wells igp=*1 with
v"(qg) =1 separated by a barrier. The index1, ... N and
periodic boundary conditions ensure the translation symme-
try.

The classical system has two degenerate translation-

Their counterparts in direct space are thus easily recoveredivariant absolute minimum configuratiors};=1} and{g;

for instance, the “on-site” renormalization coefficiem
=C,;; can be simply expressed as

o

1

— ——. (38
K Mi=1 v24+ wi+ K

) 2
D=((£))= 5

=—1}, as well as relative minima, the static “kinks,” with
the configuration going over from one well to the otkemq.,
g;— *1 for i— x, respectively. In the continuum limit
ia—x the general kink configuration is indeegl(x)=
*tanhQ(x—Xxg), so that it is localized with a characteristic
lengthQ ~* [the “relativistic” velocity has been set to 1 in
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Eq. (39), so that length and time are dimensionally equiva-dom is expected not to interact with the dissipation Hatid

lent], and its energy izx=2/3g. thus not to dissipajeif its characteristic frequency is much
The quantum behavior of the system is ruled by the ratidarger thanwp .

between the characteristic frequency of the quasiharmonic Equation(46) corresponds to taking @etarded real-time

excitations of the syste) and the energy scaky, so that memory damping function with exponential decay

we are led to introduce the coupling parameter

y(t)=0(t) y wpe™ “°". (47)
Q 3
Q= ex 29 (4D This becomes & function in theOhmic(or Markovian limit
wp—®:
that we will use in place ofj, using the notations of Ref.
[18]; another useful dimensionless parameter is the kink y(2)=y, y(t)=y8(t-0"). (48
length in lattice unitsR=1/aQ) (R—« in the continuum
limit). It turns out to be useful to us@ as the natural fre- From Egs.(45 and (46) and introducing the reduced

quency scale, and alsg=Q/Q as the overall energy scale, damping strength and Drude frequency

since the most interesting thermodynamic features are dis-

played when kinks are thermally excited in the system; for I'=y/Q, Qp=wp/Q (49)
instance, this results in a peak of the specific heat-d.2,

wheret=T/g is the reduced temperature used from nowthe dissipation kernel, which has the dimension of a square
on frequency, becomes

The ¢* chain Hamiltonian can then be written as

, K ro v, /Q (50
“ R “ “ 5= DO 1., /O "
H:«SK{QT E p?+V(Q) |, (42 02 Qp+v,/Q
I
3 2 B. Effective potential
V(g)= 2R i v(ai)+ 7(qi—qi71)2 , (43 As already remarked, the relevant nonlinear effects on the

thermodynamic behavior of thé* chain occur at finite tem-

and from Eq(32) one can immediately find the identification Perature, when kinks are excited in the system. Therefore, in
mk—lszlzzQstK/& The meaning ofQ as “quantum the study of the quantum system it is crucial to retain the
coupling” becomes immediately apparent if one thinks tooverall nonlinearity that gives rise to the kink solutions. This

o~ e goal cannot be achieved by a perturbative appr¢aehand
?320;?; |innt(cjer,ezuch thafq;.p;]=1Q4;; , whereQ plays the the effective potential method appears the only one through

. o . . which one can obtain significant results.
To introduce dissipation in thé* chain, we use the sim- 9

. . . The recipe(30) of the preceding section for deriving the
plest CL model withN independent environmental baths, : . . . .
that gives a diagonal kernel matrix, E&). In order to make (LCA) effective potential applies very simply to the potential

. : . ..o~ (43), once one assumes taking a translation-invariant mini-
contact with the usual formalism, we write the dISSIpatIOH( ) 9

. mum dp=1{do; =0do}. Since any quadratic terms, such as the
kernel as a Fourier transfarm, nearest-neighbor term in E3), remain unchanged, it ap-

m > pears that the effective potential can be written in the same
K(u)= — Z el (44) form as Eq.(43),

n=—oo

3 R?
where v,=27n/B=27nQt/Q are the Matsubara frequen- Veﬁ(Q)_ZR EI ver(Gi) + 2 (@i—ai-0)°, (51
cies, setting thefl0]
wherev is replaced by an effective local potential,
kn=Kn = 7ol 7(2= w4}, (45) (@) Is replaced by P

: . 1 3 ~
wherey(z) is the Laplace transform of the real-time memory ver(Q) = =[02—1+3D(t)]?+ =D2(t) +tu(t). (52
damping functiony(t) that would appear in the Langevin 8 4
equation derived by elimination of the bath variables from

the CL model equations of motidi0]. D()=D(t;Q,R.T', Qp) is the renormalization coefficient
We shall use @rudelike spectral function of the envi- defined in Eq.(38) and u(t) = (2R/3N) u(t), with u(t) as
ronmental interactiof10], i.e., defined in Eq(35). The (doubly degenerajeninimum is in
0Jo=*+v1—3D, i.e., the wells are “effectively” closer by
Y wp the effect of quantum fluctuations.
¥(2)= s (46) From Eq.(31) one finds

where the constany rules thestrengthof the coupling with B :ﬁ " . Db20s s s
the dissipation bath, while the Drude frequeney charac- Bij 2R [ver(do) &ij + RA28; = 81 j 17 81 j-1)]
terizes its ‘bandwidth” For instance, a given degree of free- (53
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and, withvgg(qe)=1—3D, its Fourier transform Eq(33)
gives the renormalized frequencies
2

Wy

k
—02=1_ 2620
QZ—Qk—l 3D+4R S|n22. (54)

The dimensionless wave vectdt takes N values in
[—a, 7] andD(t) andx(t) can be rewritten as

D(t ——ZRE i - 55
V= 3w 4 A=1 (7n)2+f2+k, =

~ _2R2 i (mn)2+f2+k,

M(t)—B—N 2 n:1|n T (56)

wheref,=QQ,/(2t), andk, can be derived from Eqs50),

,,k, _QF fD7Tn
n_z_th+7Tn'

(57)

with f5=QQ/(2t). Note that Eqs(54) and (55) are to be
solved self-consistently.
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bath if Qﬁ>1‘ Qp. Thus the nondissipative limit for the
whole system occurs wheh QD<Q§:0~1. On the other
hand, a crossover should be observed whed, becomes
smaller than the squared Debye frequeﬁ)ﬁgw so that the
highest-frequency modes become nondissipative. For in-
stance, a less “dissipative” behavior is to be expected for
guantities that depend weakly upon the low-frequency
modes, such as the nearest-neighbor distance fluctuation, as
we will show in the next section. Of course, in the Ohmic
limit Qp—o all modes do dissipate and such a crossover
cannot exist.

We finally observe that the fundamental form¢ia) for
thermal averages translates in the present case to

(O)=¢({O(p,a+ O)err, (62)

where the classical-like average with the effective potential
reads

N/2

st f dq( . )efveff(Q)/t.

47RQ?

1
(- >eff:§ (63

In order to calculate averages involving on-site momenta

we will also need the LCA renormalization coefficient

)

3t 24K,

2Q%RN ; nS=e (7n)2+ 24k,
(58)

A(ty=((p?))=

It is apparent that both and . are divergent in the Ohmic

limit, when k,=QI 7n/(2t)~n. This immediately tells us

IV. GENERAL RESULTS

With the above formulation the problem is ready for a
numerical evaluation of Eqg62) and (63), that gives the

partition function(setting®= 1) and the thermal averages of
observables. We employed the numerical transfer matrix
technique20], especially useful in the thermodynamic limit
N—oo, by which the numerical part of the calculations is
very efficient and can be practically considered exact. This

that the effect of Drude-like dissipation is to enhance theg hnigue reduces the integrals over the configurations of a

momentum fluctuations; on the other harld, decreases

one-dimensional array of particles to a secular integral equa-

when the dissipation §trength is raised, i.e., 'Fhe' coprdinatﬁon’ whose evaluation is implemented numerically using a
pure-quantum fluctuations are quenched by dissipation. Thgis rete mesh of points for the possible values of each degree

physical reason for this lies in the fact that the CL model
considers coordinate coupling with the dissipation bath; for

thorough discussion see Refd.0,14. The dissipation ef-

fects in the thermal averages of quantities depending on bot

of freedom. Moreover, the reflection symmetry of the local

&ffective potential, can be used to halve the dimension of the

ransfer matrix.
We performed temperature scans over the region of inter-

momenta and coordinates, as internal energy or specific heri\_:l;st and calculated several quantities, taking the value “per

are therefore unpredictable on a simple basis.
In the nondissipative case the summations avean be
analytically performed, giving the known results:

QR

D(t;[=0)= ~—— >, ! hf ! 59
(t,—)—B_NkQ—kCOtkf—k, (59
- 2R sinh f,,
,u(t,F—O)—ﬁ; In o (60)
3
At T=0)= ——— > Q,cothf,. (61)

4QRN %

site” for the extensive ones. From the free enefdy)=
—N"tIn Z(t) we calculated the internal energy(t)
=f(t)—to,f(t) and the specific heatc(t)=2d,u(t)=
—taff(t) by numerical derivation. In addition we evaluated
the thermal average of the squared site coorditafe, the
local potentiakv (q;)), the square nearest-neighbor displace-
ment ((§;—@;_1)?), and the square momentutp?). For
any parameter set,Q,R,I",Q}p) the self-consistent compu-
tation of D and hence of the last term of(q), Eqgs.(55)
and(56), was performed in negligible computer time using a
continuum termination of the summation.

Since the main point of this work is to study the effect of
varying the dissipation parameters, all the quantities reported

In order to clarify the way in which the Drude frequency here are evaluated for a fixed value of the kink length
characterizes the bath bandwidth, we note that the above5 and using the reference val@=0.2 for the quantum

nondissipative limits are found if the conditidg,< wE is
satisfied for all values of and for all modesk. The maxi-
mum value ofk,,, obtained fom—o, is k,,=y wp. There-

coupling, which gives fairly strong quantum effe¢tee be-
havior vsQ and the continuum limiR— <o, which requires a
careful analysis, are discussed in Hd8]). For comparison,

fore, thekth mode interacts negligibly with the dissipation in the figures we also report the classical results, that corre-
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FIG. 2. Renormalization coefficiem(t) from Eq.(55), for dif-
ent values of the damping strendth Parameters and lines as in
Fig. 1. Note thaD(t)—0 whenl'—o .

FIG. 1. Mean-square fluctuations of the coordinate operato?er
(diz) vs reduced temperatutefor different values of the damping
strengthl’, at fixed coupling paramet&)=0.2, kink lengthR=5,
and Drude cutoff frequenc§) 5= 100. Solid lineI’=0; dotted line:
I'=5; short-dashed linel’=20; long-dashed linel’=100; bold-
solid line: classical result. The latter corresponds alsb tex in
this case.

Since raising the temperature drives the system towards the
classical behavior, this phenomenon is in agreement with the
concept that the thermodynamics of a classical system is not
affected by dissipation.
spond toQ=0. We therefore analyze the dependence upon On the same basis one can interpret the behavior of the
the damping strength and the Drude frequend), which  average local potentidb (Q;)), which is reported in Fig. 3. It
in our scheme fully characterize the interaction between theises with temperature because of thermal and quantum fluc-
system and the environment, i.e., the dissipation. tuations and in the classical case at lbthe initial slope is
In order to have a significant dissipative coupling with all R/(3y/1+4R?)~1/6; whent=0.5 the nonlinearity domi-
the modes of our system a sufficiently broad environmentahates and the curves show a crossover to a smaller slope.
coupling spectrum is needed, i.e., we are interested in valueSince the potential depends on the coordinates only, the in-
of the Drude frequencyQp such that QDEQ§=,T/F clusion of dissipation leads the quantum behavior back to-
~A4R?IT. Taking Qp=100 the condition is thus satisfied wards the classical curve.
choosing valued’=1. At the end of this section we also On the other hand, the fluctuations of the momenta are
consider the effect of lowering the value &fy and check enhanced by dissipation, and the role of the damping effects
the predictions made at the end of the preceding section. is nonpredictable on a simple basis if one considers thermo-
In Fig. 1 we report the temperature behavior of the meandynamic quantities where both coordinates and momenta en-
square fluctuations of the site coordin&g). Att=0, inthe ter into play. One of these is the specific he@f), which is
classical case the coordinate lies in the minipia 1 of the ~ proportional to the mean-square fluctuation of the Hamil-
potential (40), while in the quantum nondissipative case thetonian:
value att=0 is smaller,(§?)=1—3D=0.84, due to the o
quantum fluctuations which occur more likely towards the c(t)=(ext) " X(H—(H))?). (64)
barrier rather than the steeper walls, and corresponds to the
minima ofv ¢(q). The classical thermal fluctuations enhanceln Fig. 4 we first report the temperature behavior of tiog-
the same effect angfj?) decreases at finite temperature, until linear part 5c(t) of the specific heat, namely, its total value
att=0.5 when kinks are excited in the systetbging the ~Minus the correspondl_r@ilssma_tlve}_ harmonic co_n_trlbutlon,
temperature in kink-energy unjtand the coordinate distri- 9¢(t)=c(t) —cx(t). This quantity is very sensitive to the
bution begins to extend towards the walls, so ttgb starts

to increase. Finally, in the high-temperature limit all curves
collapse into the classical one. Switching on the damping 0.08 r = \335'\03\
strengthl” the average oﬁiz tends to come back to the clas- /,,f;?’ = ¢
sical value: in other words, the pure-quantum fluctuations of —~ 0086 r /;f;’//
the coordinates are “effectively” quenched by dissipation, <’;~ /,'7
as we already remarked and can be observed in Fig. 2, where < 0.04 /
the pure-quantum renormalization coefficiedt) = ((£2)) ~ vy
of Eq. (55) is reported for different values df. 0.02 ;,';/’
In Fig. 1 one can also observe that before collapsing into /)
one single curve asis raised, the finitd- curves get closer 0.00

to the quantum result. This can be explained by considering 00 02 04 06 08 10

the expressior{55) of the renormalization coefficierd (t) t

together with Eq(57): a rough estimate tells that dissipation  F|G. 3. Average local potential enerdy(d;)) vs reduced tem-
is not effective (in quenching the value oD) whenI"  peraturet, for different values of the damping strength Param-
<I'(t)=2t#/Q; for instance, I'((t=0.2)~6 and I'(t eters and lines as in Fig. 1. Note tHat(q;)) tends to the classical
=0.5)~16, explaining the behavior of the curve fbr=5. behavior forl’ — o,
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FIG. 4. Nonlinear contribution to the specific heat, defined as
oc(t)=c(t) —cy(t) (times the kink lengtiR), vs reduced tempera-
ture t, for different values of the damping strendth Parameters
and lines as in Fig. 1. Fdr—«, dc(t) tends to the classical be-
havior.

FIG. 6. Effect of the dissipation strength on the harmonic con-
tribution to the specific healc,(t,I") =cy(t,I') — ¢,(t,0) vs reduced
temperaturd, for different values of the damping strendth Pa-
rameters and lines as in Fig. 1.

. : : . . . bridization of two oscillators of equal frequenay, one rep-
nonlinearity of the system, since its value is zero in a har-

. imai d the fact that the POSCHA retai resenting the system and the other the bath: the dissipation
monic approximation, and the fact that the Q X rélaiN%rises indeed from such hybridizations, whose effect is maxi-
all classical nonlinear features is crucial for gettifig. In-

. h h of th . | hdh mized at resonance. Adding a small linear coordinate cou-
creasing the strength of the enwronmgnta coup _g_ € pling 2y w(q,0, and diagonalizing one gets two diagonal fre-
curves can be seen to tend to the classical result, giving us

> . &hencies,wizwi v, and in fact it can be seen that the
nontrivial outcome of the formalism.

This is remarkable, also in view of the fact that the totalquamlty
specific heat, shown in Fig. 5, does not behave like its non- Sch(t,y)=ch(w+ ) +ch(w—v)—2cH ), (65)
linear part. Increasindg’ the curves do not tend to the clas-
sical one: rather, the classical limit is more rapidly reached irwith c(w)=(f/sinhf)?, f=w/2t, behaves qualitatively like
the nondissipative cas€=0. In particular, one can observe ¢&c(t,I') in Fig. 6.
in this figure two significative feature§) the strong depen- In order to understand the second feature of the total spe-
dence o, with the curves crossing &t-0.4, and thatii) at  cific heat, we report in Fig. 7 the thermal average of the

large values ofl’, the specific heat seems to tend to thekinetic energy per sitq‘K)z(QzR/S)(f)iz). We recall that

classical result minus one-hatf(t) - cq(t) — 1/2. These fea-  jncreasingl’ the quantum fluctuations of momenta are en-

tures arise from two different effects. hanced, as can indeed be seen in Fig. 7 where the curve that
The first one can be explained by the consequences of

dissipation on the linear contribution to the specific heat. In

. X . S 16 | ' ' ' ' ' ]
Fig. 6 we report indeed the difference between the dissipa- | .- -
tive and the nondissipative harmonic specific heat, I
ocy(t,I)=cy(t,I') —cy(t,0), where the crossing of the al
curves att~0.4 can be observed: the dissipation bath ap-
pears to absorb energy from the system at taamd to give 1.2 ¢
it back whent=0.4. This is therefore a purely harmonic
effect, whose origin can be understood thinking of the hy- 1.0 +
P
12 T T T T T T < M 08 r
. ~
10 } classical
06
0.8 t
04
© 06

0.4 | 0.2 r

0.2 [/ 0.0 e

0.0 . . . . . . 00 02 04 06 08 10 12 14

00 02 04 06 08 1.0 12 14 t

t FIG. 7. Average kinetic energyf() vs reduced temperatute
FIG. 5. Total specific heat(t) vs reduced temperatute for for different values of damping intensily. Parameters and lines as
different values of the damping strendth Parameters and lines as in Fig. 1. One can see th@f() diverges forI’—«, while it be-
in Fig. 1. Note that fol'—~, c(t) tends toc,—1/2. comes flatter and flatter.
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FIG. 8. Kinetic and interaction contributions to the specific heat,

namely,c(t) = a(K) andcy(t)=a,(V), vs reduced temperatute

for different values of damping intensily. Parameters and lines as

in Fig. 1. Note thaty(t)—0 for I'—co.
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FIG. 9. Thermal average&?) and ((g;—@;_1)2), vs reduced
temperaturd, for different values of the Drude frequen€y,, at
fixed couplingQ=0.2, kink lengthR=5, and damping strength
=20. Solid line: Qp=1; dotted line:Q)p=3; short-dashed line:
0p=10; long-dashed line:Q)p=30; dot-dashed line:()p=2

reaches more rapidly the classical limit is the nondissipativéOhmic limit); bold-solid line: nondissipative result, i.d'=0 or
one, as it also occurs for the specific heat in Fig. 5. However{}o=0. ForQ2p—0 the behavior tends to the nondissipative result,

while (R) increases with damping, its slope decreases,
shown in the upper part of Fig. 8, where we compare t
contributions to the specific heat arising from the kinetic an

the interaction parts of the Hamiltonian, namety(t)
=3(K(t)) and cy(t)=a(V(t)). WhenT increasescy(t)

ince the bath bandwidtiT" (0, becomes too narrow and only

h ow-frequency system modes can dissipate. The effect is much
Gstronger for the nearest-neighbor displacenisat text

Finally, let us discuss the role of the cutoff frequency
Qp. As we have seen before, the mechanism of the coupling

rises more and more slowly towards the classical value 1/2,atween the system and the environment can be traced back,
as if the kinetic specific heat were quenched by dissipationy, 5 simplified scheme, to the hybridization of oscillators.
while c,/(t) tends to the classical curve. The combined effectrhis process is effective only if the frequencies of the oscil-
is therefore that for largé’ the total specific heatFig. 5  |ators are close to resonance. So the mddg of the sys-
tends to its classical interaction part and seems to be lackingm which couple with the environment, are those which do

the kinetic contribution.

not exceed the cutoff frequenayl” Qp, as discussed at the

The condition for(K) and ck(t) to reach their classical end of Sec. Ill B. This gives rise to interesting effects: as an

limits (~t/2 and~ 1/2, respectivelyis easily found by writ-

instance, in Fig. 9 we analyze the effect of varying on the

ing, from Eq.(58), the thermal average of the kinetic energy averages of the on-site coording@’) and of the nearest-

as

oo

Lt t f2+k,

K==+ — _ 66
(K)=3 N; .gl(wn)2+f§+kn (60
and using Eqgs(57) and(54). At the end the following con-
dition is obtained:

Q
V2R?+T Qp,
2.3 °

which for the valuefR=5,Q0=0.2, and(),=100 considered
here amounts t6>0.6\0.5+1I", which is well verified from
our numerical outcomes.

t> (67)

neighbor displacement

((@=8i—0)?)={(a = di—1)*)e+ D(1). (68)
The latter involves the nearest-neighbor renormalization co-
efficientD=2(C;; —C; j_1), which is expressed as

Q%R “. 2(1—cosk)
® 3tN ; ngl (mn)2+f2+k,

(69)
Comparing with Eq.(55) it appears that the contribution
from the low-frequency modes is less relevant due to the
k-dependent factor, allowing one to expect that when the
cutoff frequency becomes smaller than the Debye frequency
Q- ,~2R, i.e., when
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Qp=<4RIT, (70 =(2m) Nfdv e '®, taking the explicit expressions of
o N ) g(e) and ofq(B—¢) from Eg. (11), and using the general
the effect of dissipation of(q;—q;—1)°) should decrease Gayssian quadrature formula
more pronouncedly than fo(rfqiz). This is indeed apparent

from Fig. 9, where the damping strength is sef'te 20 and

" o (2mN2
the above condition read3,=<5. f dx e~ xPx2+ixa_ 2277

Jdet®

one can integrate over the variabkgsandy, , obtaining

e~ (a® ta/2. (A2)

V. CONCLUSIONS

In this paper we have derived thgure-quantum self-

consistent harmonic approximatidormalism for an inter- m \N2 —ﬂw(q do*do-
acting many-body system with Caldeira-Leggett dissipation 5 (q",q’ q) ) i f
and nondiagonal quadratic kinetic energy. The PQSCHA al- 27p M(Q) aﬂo (2m)N

lows one to reduce quantum mechanical thermodynamic cal-
culations to a classical-like configuration integral, where in
the present case also the quantum effects of dissipation are (A3)
included. In order to deal with many degrees of freedom the
necessaryow-couplingapproximation has been introduced. ,
The latter, if the system’s symmetries are exploited, result%f
in very simple expressions for the renormalization coeffi-
cients appearing in the theory. This is shown in detail for the

% ef(‘u*cslﬁ+tv*ssu*)/zei[tv+§+tv*gj,

here &= i(d'+q')—q and &=q'—q', v =0v"+0v' and
=3(v"—v'); furthermore, the functiom(q) is defined

case of translation symmetry. w
The rest of the paper is devoted to the application of the w(g) = 2 Indet(l) n(Q) (A%)
framework to the discretep* one-dimensional field, whose (mAHN

strong nonlinearity results in the characteristic kink excita-

tions which play a determinant role in the thermodynamicsgpng

A Drude-like spectrum of the environmental coupling is cho-

sen for dissipation, and its influence on several quantities is 5 =

ana_llyzed when the two chgracterlzmg parameters, i.e., d|_$3|- C,=— > ®;1CO§Vn8, (A5)
pation strength and bandwidth, are varied. The PQSCHA is a =

unique tool for dealing with such a system, since any ap-

proximate theory must retain the strong nonlinearity, which 8

has a mainly classical character, and this rules out conven- S.=— E (I)r:lsinz]/ng_ (AB)
tional perturbative approaches. In general, the inclusion of =

dissipation through coordinate coupling with the environ-

ment results in quenched quantum fluctuations of the coordsing again Eq(A2), the reduced density can then be writ-
dinates, while those of the momenta are emphasized. Inteten as

esting and nontrivial behavior is found for the specific heat,

since the prevalence of either of the mentioned effects is not o m \N2g—Bw(g 1
predictable on simple grounds. po(q”,q’;q)=(—) — lim —
The method proves to be very useful for studying our 2mp w(@) e—o Fe
model system, and we believe it will find several application
in physical contexts where both quantum and dissipative ef- « 1 ~(tec; terles, o2
fects play an important role. ( 277)N1/detCS detS, '

APPENDIX A: THE TRIAL DENSITY MATRIX (A7)
In this appendix we report the details of the calculationsin order to perform the limit, we have to expa8dfor small
which lead to the results reported in Sec. Il B. . Let us first consider the associated matrix
Inserting the proper constraints in E@®) and, using the

explicit form (13) of the trial action in terms of Matsubara ~ 8 =
variables, one has SSZA*SSA*EE > [v2+0,] Isirfre,  (A8)
n=1
_ () _
po(d”,q’;@)= lim jg Dlg(u)]s(a—qgla(uw)]) with ®,=A[B?+K,]A. Subtracting from the exactly sum-
e=0 e mable serie$21]
X o(a(e) —a")o(a(B—&)— ") .
X @~ BXn®nXn + Yo Pryn) (A1) _8 > Sl voe :28( 1_23) (A9)
e ’ g&‘ B = Vﬁ ﬁ 1

where the path-integral measure is given by B@®). Rep-
resenting thes functions that fixq and g’ as §(q) that is verified forle|< /2, we have
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2
n

~ 8 <
gs_ss:_ E ®n[vﬁ+®n]7l

B & (A10)

14

Provided tha®,/n“*—0 for n—« and for somex<<1 this

series and its first and second derivatives are uniformly con-

vergent: therefore the limit—0 can be taken under the
summation yielding the Taylor expansion

- 8 <
0.~5.=e% 5 > O [vi+0,] 1+0(s%) (AL
n=1
and finally givingS,=2¢(1—2eA) +0(&%), with
1 X B
A=E > 0 [vi+0e,] (A12)
n=-—w

Then, we also have d&i=(2s/m)N and S '=(A"2

+2eA)/2¢, with A=A"AAL, and in view of Eq(10) the
limit for e—0 in Eq. (A7) can be evaluated, leaving
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. . m N/2 o o
po(q”,q’;q)=(—2w) e M@=
1 tegp—1lgy t
X e—( & TE+ {A{)/Z_
V2m)NdetC
(A13)

Going over to the Weyl symb@[L6,17] corresponding to the
reduced density matrix, one obtains

. . m \ N2 _

T N = pw(a) — p(a)
po(P,G;q) = (2) (277[;) e

e_t§C—1§/2

X .

J2m)NdetC \(27)NdetA

etpA’lp/Z

(A14)

This Gaussian distribution fcfzq—aandp determines ex-
actly the double-bracket average of EGk9) and(20), and it
is then easy to derive Eq18).

[1] R.P. Feynman, Phys. Re97, 660(1955.

[2] R. P. Feynman and A. R. HibbQuantum Mechanics and
Path Integrals(McGraw-Hill, New York, 19635.

[3] R. P. Feynman Statistical MechanicgBenjamin, Reading,
MA, 1972).

[4] R. Giachetti and V. Tognetti, Phys. Rev. L€§6, 912(1985.

[5] R.P. Feynman and H. Kleinert, Phys. Rev3A 5080(1986.

[6] A. Cuccoliet al, J. Phys.: Condens. Matt@r 7891(1995.

[7] H. Kleinert, Path Integrals in Quantum Mechanics, Statistics,
and Polymer Physi¢s2nd ed.(World Scientific, Singapore,
1995.

[8] S. Kim and M.Y. Choi, Phys. Rev. B2, 80 (1990.

[9] G. Falci, R. Fazio, and G. Giaquinta, Europhys. L&#, 145
(1991.

[10] U. Weiss,Quantum Dissipative Systen#nd ed.(World Sci-
entific, Singapore, 1999

[11] J.D. Bao, Y.Z. Zhuo, and X.Z. Wu, Phys. Rev.®, 5656
(1995.

[12] A. Cuccoli, A. Rossi, V. Tognetti, and R. Vaia, Phys. Rev. E
55, 4849(1997.

[13] A. Cuccaoli, V. Tognetti, P. Verrucchi, and R. Vaia, Phys. Rev.
A 45, 8418(1992.

[14] A.O. Caldeira and A.J. Leggett, Ann. Phy@&\l.Y.) 149 374
(1983.

[15] W. Zwerger, A.T. Dorsey, and M.P.A. Fisher, Phys. Rev. B
34, 6518(1986.

[16] F.A. Berezin, Usp. Fiz. Nauk32, 497(1980 [Sov. Phys. Usp.
23, 763(1980].

[17] M. Hillery, R.F. O’Connell, M.O. Scully, and E.P. Wigner,
Phys. Rep106, 122 (1984.

[18] R. Giachetti, V. Tognetti, and R. Vaia, Phys. Rev38, 1521
(1988; 38, 1638(1988.

[19] K. Maki and H. Takayama, Phys. Rev.Z), 5009(1979.

[20] T. Schneider and E. Stoll, Phys. Rev.2R, 5317(1980.

[21] I.S. Gradshteyn and I. M. Ryzhikable of Integrals, Series,
and ProductgAcademic Press, New York, 1980



