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Thermodynamics of quantum dissipative many-body systems
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We consider quantum nonlinear many-body systems with dissipation described within the Caldeira-Leggett
model, i.e., by a nonlocal action in the path integral for the density matrix. Approximate classical-like formulas
for thermodynamic quantities are derived for the case of many degrees of freedom, with general kinetic and
dissipative quadratic forms. The underlying scheme is thepure-quantum self-consistent harmonic approxima-
tion ~PQSCHA!, equivalent to the variational approach by the Feynman-Jensen inequality with a suitable
quadratic nonlocal trial action. A low-coupling approximation permits us to get manageable PQSCHA expres-
sions for quantum thermal averages with a classical Boltzmann factor involving an effective potential and an
inner Gaussian average that describes the fluctuations originating from the interplay of quanticity and dissipa-
tion. The application of the PQSCHA to a quantumf4 chain with Drude-like dissipation shows nontrivial
effects of dissipation, depending upon its strength and bandwidth.@S1063-651X~99!08707-3#

PACS number~s!: 05.30.2d, 05.40.2a, 64.60.Cn
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I. INTRODUCTION

Historically, the classical effective potential was intr
duced in 1955 by Feynman@1# for treating the polaron,
which can be regarded as an electron subjected to a ‘‘d
pative’’ interaction with the lattice phonons. A remarkab
improvement of Feynman’s effective potential in the nond
sipative case@2,3# was obtained@4,5# three decades later b
introducing a quadratic term and an extra variational para
eter in the trial action used to approximate the partition fu
tion.

Several applications of the improved method to co
densed matter systems have demonstrated its usefulnes~see
@6,7#, and references therein!. The fact that it is also suitable
to treat open systems was used in previous studies@8,9# ba-
sically aimed to obtain a classical-like expression for the f
energy in the case of strictly linear dissipation@10#; the case
of nonlinear dissipation was also considered@11#.

In a previous paper@12# we used the method, also calle
the pure-quantum self-consistent harmonic approximat
~PQSCHA! after its generalization to phase-space Hamil
nians@13,6#, to obtain the density matrix of a single partic
with nonlinear interaction and with dissipation describ
through the Caldeira-Leggett~CL! model @14,10#. In the
present work we deal with many degrees of freedom, fac
the problem of making the method suitable for actual ap
cations to condensed matter systems.

In Sec. II we develop the general method, as well as
necessary low-coupling approximation and its specializa

*Electronic address: cuccoli@fi.infn.it
†Electronic address: fubini@fi.infn.it
‡Electronic address: tognetti@fi.infn.it
§Electronic address: vaia@ieq.fi.cnr.it
PRE 601063-651X/99/60~1!/231~11!/$15.00
si-

-

-
-

-

e

n
-

g
i-

e
n

to the most common case of translation-invariant systems
Sec. III the kink-bearing quantumf4 chain is considered and
the corresponding effective classical potential is explici
derived. Finally, results for some thermodynamic quantit
of this system are collected and illustrated in Sec. IV.

II. PQSCHA FOR DISSIPATIVE MANY-BODY SYSTEMS

A. Path integral for the density matrix

Let us consider a general system withN degrees of free-
dom, i.e., canonical coordinate and momentum operatoq̂
[$q̂i% i 51, . . . ,N and p̂[$ p̂i% i 51, . . . ,N , with the commutation
relations@ q̂i ,p̂ j #5 id i j ~we set\51 from now on!, and de-
scribed by a Hamiltonian with a quadratic kinetic energy a
a nonlinear potential term,

Ĥ5
1

2
tp̂A2p̂1V~ q̂!. ~1!

The matrixA25$Ai j
2 % is symmetric, real, and positive defi

nite; thus its positive square rootA and its inverseA21 do
exist; it is convenient to define its determinant in terms o
positive ‘‘mass’’ m,

det A2[m2N. ~2!

In order to introduce dissipation in this system, furth
information is needed about the physics of the dissipat
mechanism. We assume this to be described through the
model, i.e., introducing an environment~or damping bath! of
harmonic degrees of freedom, but still one can think of d
ferent kinds of environmental coupling. For instance, seve
damping baths coupled with the coordinates can be use
describe different dissipation mechanisms, and it can be e
necessary to introduce infinite~correlated or uncorrelated!
baths; since there are many ‘‘particles’’ in the system, it m
231 ©1999 The American Physical Society
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happen that all particles are coupled with one single envir
ment, so introducing correlations via dissipation, or — in t
simplest physical model — that there are infinite identi
independent baths, one for each particle. We just men
here that — although here we stick with coordinate coupl
— it is also possible to couple the environment with m
menta @15#, or with both coordinates and momenta: t
framework we are going to describe can also be general
to these cases.

To be able to access all the relevant thermodynamic qu
tities and not only the macroscopic ones, the full dens
matrix r(q9,q8) is needed, as the knowledge of the on
diagonal partr(q,q) does not permit direct calculation o
averages of momentum-dependent observables, as the
age kinetic energy.

The density matrix at the equilibrium temperatureT
5b21 in the coordinate representation is expressed by F
nman’s path integral as

r~q9,q8![^q9ue2bĤtotuq8&5E
q8

q9D@q~u!#e2S[q(u)] , ~3!

whereĤtot is the sum of Eq.~1! and the Hamiltonians for the
bath and the system-bath coupling, and the average with
spect to the bath variables~usually called ‘‘tracing out’’! is
understood@10#. The path integration is defined as a su
over all pathsq(u), with uP@0,b#, q(0)5q8, and q(b)
5q9.

The general CL Euclidean action for the system, obtain
after having traced out all environmental variables, takes
form

S@q~u!#5E
0

b

duF1

2
tq̇~u!A22q̇~u!1V„q~u!…

2E
0

bdu8

4
t
„q~u!2q~u8!…

3K~u2u8!„q~u!2q~u8!…G , ~4!

where the kernel matrixK(u)5$Ki j (u)% is a real symmetric
matrix that replaces the scalar kernelk(u) of the single-
particle case@10#; as a function ofu it keeps its symmetry
and periodicity, K(u)5K(2u)5K(b2u), and satisfies
*0

bduK(u)50. In the case ofN independent identical envi
ronmental baths coupled to each coordinateq̂i one simply
has a diagonal kernel:

K~u!5k~u!. ~5!

We will consider this case for the application shown in S
III.

B. General PQSCHA

As suggested by Feynman@3#, the path integral~4! can be
rearranged by summing over classes of paths that share
sameaverage pointq̄:

r~q9,q8!5E dNq̄ r̄~q9,q8;q̄!, ~6!
-
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r̄~q9,q8;q̄!5E
q8

q9D@q~u!#d„q̄2q̄ @q~u!#…e2S[q(u)] , ~7!

whereq̄ @q(u)#5(b)21*0
bduq(u) is the average-point func

tional. The PQSCHA is based on approximating the act
S@q(u)# with a trial actionS0@q(u)# that is quadratic so tha
the path integral can be evaluated analytically, and conta
parameters that can be optimized. It is to be remarked
only paths with a fixedq̄ appear in the path integral~7!, so
thatS0@q(u)# ~i.e., the parameters appearing therein! can de-
pend onq̄: one deals then with a much more general class
trial actions than one could obtain taking sensible appro
mations of the Hamiltonian operator — as, for instance,
the usual self-consistent harmonic approximation~SCHA! —
and a better approximation is then to be expected; the pric
that the classical-like integral overq̄ is left over. We define
then the trial action by replacingV(q) in the action~4! with
a trial quadratic ‘‘potential,’’

V0~q;q̄!5w~ q̄!1
1

2
t~q2q̄!B2~ q̄!~q2q̄!. ~8!

The parameters are the scalarw(q̄) and theN(N11)/2 com-
ponents of the symmetric real matrixB2(q̄). These are to be
optimized in such a way that the trial reduced dens
r̄0(q9,q8;q̄) at best approximatesq̄(q9,q8;q̄), for each value
of q̄.

The off-diagonal elements of the trial reduced density
rather tricky to evaluate in the presence of dissipation.
deed, the general method of calculating the minimal act
cannot be used~the classical path being the solution
infinite-order equations of motion!, while the method of Fou-
rier expansion of the paths can be applied only to integ
over closed paths~but q9Þq8 for the off-diagonal part of the
density matrix!. However, the latter method may still be use
if one closes the paths in a small interval and separa
evaluates the corresponding contribution. Explicitly:

r̄0~q9,q8;q̄!5 lim
«→0

1

F«
R D@q~u!#e2S0[q(u)]

3d„q̄2q̄ @q~u!#…

3d„q~«!2q8…d„q~b2«!2q9…. ~9!

Here the integral is over allclosedpaths$q(u)uuP@0,b#%
satisfying the constraintsq(«)5q8 andq(b2«)5q9; F« is
the integral over the open paths$q(u)uuP@2«,«#% ~the
range@b2«,b# is periodically mapped onto@2«,0#) with
end pointsq(2«)5q9 and q(«)5q8. In the limit of small
«,F« becomes the free-particle density matrix,

F«5S m

4p« D N/2

e2 tz A22z/(4«)1O(«). ~10!

wherez[q92q8. The paths in Eq.~9! can thus be Fourier
expanded,
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q~u!5q̄12(
n51

`

~xn cosnnu1yn sinnnu!. ~11!

nn52pn/b are the Matsubara frequencies, the zeroth co
ponent is justq̄. The measure of the path integral becom
@3#

R D@q~u!#→S m

2pb D N/2E dq̄)
n51

` S mbnn
2

p D NE dxndyn ,

~12!

and the trial action takes the form

S0@q~u!#5bw~ q̄!1b (
n51

`

@ txnFnxn1 tynFnyn#, ~13!

where the matricesFn5$Fn,i j % are given by

Fn~ q̄!5nn
2A221B2~ q̄!1Kn ~14!

andKn is the Matsubara transform of the kernel matrixK(u),

Kn5E
0

b

du K~u! cosnnu. ~15!

The calculation of the reduced density~9! is reported in the
Appendix; furthermore, it is apparent that no confusi
arises if wesuppress the barfrom q̄ in the rest of the paper

The simplest way for writing the final result is to give th
expression of the thermal average of a generic observabÔ
in terms of its Weyl symbol@16,17,13#, whose definition is

O~p,q!5E dz ei tpz ^q1 1
2 zuÔuq2 1

2 z&. ~16!

Indeed, using the trace property of Weyl symbols,

Tr r̂Ô5E dpdq

~2p!N
r~p,q!O~p,q!, ~17!

one finds the fundamental formula that approximates qu
tum averages by means of a classical-like expression wit
effective potentialVeff ,

^Ô&5
1

Z S m

2pb D N/2E dq e2bVeff(q)^^O~p,q1j!&&,

~18!

where^^ && is the Gaussian average over the variablesp and
j determined byr̄0 as reported in Eq.~A14!; this average
can be uniquely defined through its nonzero mome
^^j tj&&5C(q) and ^^p tp&&5L(q), with

C~q!5
2

b (
n51

`

Fn
21~q!, ~19!

L~q!5
1

b (
n52`

`

A22@A22nn
2Fn

21~q!#A22, ~20!

whose components are therenormalization coefficients; the
effective potential reads
-
s

n-
an

ts

Veff~q!5w~q!1b21m~q!, ~21!

with

m~q!5 (
n51

`

ln
detFn~q!

~mnn
2!N

. ~22!

To implement the PQSCHA we require@13,6# that the
parameters of the trial action are such that they match ther0
averages of the original and the trial potential and of th
second derivatives:

w~q!5^^V~q1j!&&2
1

2
Tr@B2~q!C~q!#, ~23!

Bi j
2 ~q!5^^]qi

]qj
V~q1j!&&. ~24!

The second equation together with Eq.~19! self-consistently
determines the solution forB(q) andC(q).

C. Low-coupling approximation

The above framework is still complicated, due to the d
pendence onq that requires a solution of Eq.~24! for any
value ofq, and also due to the matrix form of Eq.~19!. The
first difficulty can be overcome by the so-calledlow-
coupling approximation~LCA! and consists in expanding th
N3N matrix B(q) so as to make the renormalization coef
cients, and hence also the Gaussian averages^^ &&, indepen-
dent of the configurationq.

In order to do this it is useful to introduce the differenti
operator

D~q!5
1

2 (
i j

Ci j ~q! ]qi
]qj

~25!

so that one can write, for any functionF(q),

^^F~q1j!&&5eD(q) F~q!, ~26!

where the derivatives are assumednot to operate on the
renormalization coefficientsCi j (q). In view of Eq. ~23! this
allows us to express the effective potential~21! as

Veff~q!5@12D~q!#eD(q)V~q!1b21m~q!. ~27!

Expanding from the configurationq0 that minimizesVeff(q),
i.e., setting B2(q)5B21dB2(q) with the convention of
dropping the fixed argumentq0, i.e., B[B(q0), from the
definition ~14! one has

detFn~q!5det@Fn1dB2~q!#.detFn$11Tr@Fn
21dB2~q!#%

~28!

and for the last term of the effective potential~21! this gives

b21m~q!.b21m1 1
2 Tr@CdB2~q!#

5b21m1D@eD(q)V~q!2eDV~q0!#, ~29!

so that Eq.~27! becomes the LCA effective potential,

Veff~q!5eDV~q!2DeDV~q0!1b21m, ~30!
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where the whole dependence onq is contained in the first
term eD V(q)5^^V(q1j)&&, calculated with the renormal
ization coefficients independent of the configuration,C
5C(q0). It is useful to note that for this reason one c
simply write, from Eq.~24!,

Bi j
2 5]qi

]qj
Veff~q0!. ~31!

It often occurs that the indicesi , j , . . . refer to the sites o
a lattice, whose symmetries can be very helpful in orde
simplify the analysis, provided that the minimum configur
tion of Veff(q) shares the same property. In generalB2(q) has
no particular symmetries, due to its dependence onq: but the
LCA matrix B25B2(q0) is likely to have the same symme
tries of the Hamiltonian if the minimum configurationq0
shares them.

Let us consider the most frequent case of translation s
metry: if the Hamiltonian and the dissipation kernelK(u) are
translation invariant, the calculations are greatly simplifi
Then all the matrices are diagonalized~apart from internal
degrees of freedom, which we do not consider here! by an
~orthogonal! Fourier transformU5$Uki%:

mk
21 dkk85(

i j
UkiUk8 jAi j

2 , ~32!

mkvk
2 dkk85(

i j
UkiUk8 jBi j

2 , ~33!

mkKn,k dkk85(
i j

UkiUk8 jKn,i j , ~34!

where we used ‘‘familiar’’ notations in terms of masses a
frequencies, in order to compare with the known expressi
for one single degree of freedom@12#. It is immediately seen
from Eq. ~2! that )kmk5mN. Taking the LCA matrixFn

5nn
2A221B21Kn the last term of the effective potential en

tails the quantity

m5(
k

(
n51

`

ln
nn

21vk
21Kn,k

nn
2

. ~35!

The renormalization coefficients of Eqs.~19! and ~20! be-
come, for the Fourier transformed variablesjk5( iUkij i and
pk5( iUkipi ,

Ckk85^^jkjk8&&5dkk8

2

bmk
(
n51

`
1

nn
21vk

21Kn,k

, ~36!

Lkk85^^pkpk8&&5dkk8

mk

b (
n52`

` vk
21Kn,k

nn
21vk

21Kn,k

. ~37!

Their counterparts in direct space are thus easily recove
for instance, the ‘‘on-site’’ renormalization coefficientD
[Cii can be simply expressed as

D[^^j i
2&&5

2

bN (
k

1

mk
(
n51

`
1

nn
21vk

21Kn,k

. ~38!
o
-

-

.

s

d:

We remark that the renormalization coefficientsCi j
5^^j ij j&& describe not only the pure quantum fluctuatio
@6# but also those arising from the dissipative coupling;
the other hand, theL i j 5^^pipj&& includes also the classica
fluctuations — the sum in Eq.~37! contains indeed then
50 term — since for a standard Hamiltonian like Eq.~1!
they are Gaussian and there is no reason for keeping t
separated.

The partition function and thermal averages are then to
evaluated by means of Eq.~18!, where, of course, the effec
tive potential and the double-bracket average are to be
derstood as the LCA ones. Note that, since the LCAL ’s do
not depend onq, averages of observables involving only th
momenta are trivially evaluated as^O(p̂)&5^^O(p)&&. In the
next section we illustrate the method by applying the abo
results to a model nonlinear many-body system.

Before moving to the application of the method, we o
serve that the effects of dissipation are always represente
the appearance of the termsKn . This can be seen in the
general formalism, in Eqs.~19!, ~20!, and ~22!, whereKn
appears through Eq.~14!, as well as in the LCA, in Eqs
~35!–~38!. The nondissipative limit@13,6# is therefore recov-
ered settingKn,k50 in all these equations: the infinite serie
can be summed up exactly as(nv2/(nn

21v2)5 f cothf,
where f 5bv/2, and the familiar expressions are obtained

III. DISSIPATIVE f4 CHAIN

A. The model

The nondissipativef4 chain has already been studie
@18,6# by the effective potential method. The model consi
of a one-dimensional array of particles with a neare
neighbor harmonic interaction and a quartic on-site inter
tion. It can be viewed as the discretized version of a c
tinuum nonlinear field theory, and is described by t
~undamped! action

S5
1

gE0

b

dua(
i

F q̇i
2

2
1

~qi2qi 21!2

2a2
1V2v~qi !G , ~39!

wherea is the chain spacing,V is the gap of the bare dis
persion relation,g is the quantum coupling, andv(qi) is the
local nonlinear potential,

v~q!5
1

8
~12q2!2, ~40!

which is symmetric and has two wells inq0561 with
v9(q0)51 separated by a barrier. The indexi 51, . . . ,N and
periodic boundary conditions ensure the translation sym
try.

The classical system has two degenerate translat
invariant absolute minimum configurations,$qi51% and $qi
521%, as well as relative minima, the static ‘‘kinks,’’ with
the configuration going over from one well to the other~e.g.,
qi→61 for i→6`, respectively!. In the continuum limit
ia→x the general kink configuration is indeedq(x)5
6tanhV(x2x0), so that it is localized with a characterist
lengthV21 @the ‘‘relativistic’’ velocity has been set to 1 in
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Eq. ~39!, so that length and time are dimensionally equiv
lent#, and its energy is«K52V/3g.

The quantum behavior of the system is ruled by the ra
between the characteristic frequency of the quasiharm
excitations of the systemV and the energy scale«K , so that
we are led to introduce the coupling parameter

Q5
V

«K
5

3

2
g, ~41!

that we will use in place ofg, using the notations of Ref
@18#; another useful dimensionless parameter is the k
length in lattice units,R51/aV (R→` in the continuum
limit !. It turns out to be useful to useV as the natural fre-
quency scale, and also«K5V/Q as the overall energy scale
since the most interesting thermodynamic features are
played when kinks are thermally excited in the system;
instance, this results in a peak of the specific heat att;0.2,
where t[T/«K is the reduced temperature used from n
on.

The f4 chain Hamiltonian can then be written as

Ĥ5«KFQ2R

3 (
i

p̂i
21V~ q̂! G , ~42!

V~q!5
3

2R (
i

Fv~qi !1
R2

2
~qi2qi 21!2G , ~43!

and from Eq.~32! one can immediately find the identificatio
mk

215m2152Q2R«K/3. The meaning ofQ as ‘‘quantum
coupling’’ becomes immediately apparent if one thinks
absorb it intop̂, such that@qi ,pj #5 iQd i j , whereQ plays the
role of \, indeed.

To introduce dissipation in thef4 chain, we use the sim
plest CL model withN independent environmental bath
that gives a diagonal kernel matrix, Eq.~5!. In order to make
contact with the usual formalism, we write the dissipati
kernel as a Fourier transform,

k~u!5
m

b (
n52`

`

einnukn , ~44!

wherenn52pn/b52pnVt/Q are the Matsubara frequen
cies, setting then@10#

kn[Kn,k5unnug~z5unnu!, ~45!

whereg(z) is the Laplace transform of the real-time memo
damping functiong(t) that would appear in the Langevi
equation derived by elimination of the bath variables fro
the CL model equations of motion@10#.

We shall use aDrude-like spectral function of the envi
ronmental interaction@10#, i.e.,

g~z!5
g vD

vD1z
, ~46!

where the constantg rules thestrengthof the coupling with
the dissipation bath, while the Drude frequencyvD charac-
terizes its ‘‘bandwidth.’’ For instance, a given degree of free
-

o
ic

k

is-
r

dom is expected not to interact with the dissipation bath~and
thus not to dissipate! if its characteristic frequency is muc
larger thanvD .

Equation~46! corresponds to taking a~retarded! real-time
memory damping function with exponential decay

g~ t !5u~ t !g vDe2vDt. ~47!

This becomes ad function in theOhmic~or Markovian! limit
vD→`:

g~z!5g, g~ t !5g d~ t201!. ~48!

From Eqs. ~45! and ~46! and introducing the reduce
damping strength and Drude frequency

G5g/V, VD5vD /V ~49!

the dissipation kernel, which has the dimension of a squ
frequency, becomes

kn

V2
5G VD

nn /V

VD1nn /V
. ~50!

B. Effective potential

As already remarked, the relevant nonlinear effects on
thermodynamic behavior of thef4 chain occur at finite tem-
perature, when kinks are excited in the system. Therefore
the study of the quantum system it is crucial to retain
overall nonlinearity that gives rise to the kink solutions. Th
goal cannot be achieved by a perturbative approach@19# and
the effective potential method appears the only one thro
which one can obtain significant results.

The recipe~30! of the preceding section for deriving th
~LCA! effective potential applies very simply to the potent
~43!, once one assumes taking a translation-invariant m
mum q05$q0,i5q0%. Since any quadratic terms, such as t
nearest-neighbor term in Eq.~43!, remain unchanged, it ap
pears that the effective potential can be written in the sa
form as Eq.~43!,

Veff~q!5
3

2R (
i

Fveff~qi !1
R2

2
~qi2qi 21!2G , ~51!

wherev(q) is replaced by an effective local potential,

veff~q!5
1

8
@q22113D~ t !#21

3

4
D2~ t !1tm̃~ t !. ~52!

D(t)5D(t;Q,R,G, VD) is the renormalization coefficien
defined in Eq.~38! and m̃(t)5(2R/3N)m(t), with m(t) as
defined in Eq.~35!. The ~doubly degenerate! minimum is in
q056A123D, i.e., the wells are ‘‘effectively’’ closer by
the effect of quantum fluctuations.

From Eq.~31! one finds

Bi j 5
3«K

2R
@veff9 ~q0!d i j 1R2~2d i j 2d i , j 112d i , j 21!#

~53!
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and, with veff9 (q0)5123D, its Fourier transform Eq.~33!
gives the renormalized frequencies

vk
2

V2
[Vk

25123D14R2 sin2
k

2
. ~54!

The dimensionless wave vectork takes N values in
@2p,p# andD(t) and m̃(t) can be rewritten as

D~ t !5
Q2R

3tN (
k

(
n51

`
1

~pn!21 f k
21 k̃n

, ~55!

m̃~ t !5
2R

3N (
k

(
n51

`

ln
~pn!21 f k

21 k̃n

~pn!2
, ~56!

wheref k5QVk /(2t), andk̃n can be derived from Eqs.~50!,

k̃n5
QG

2t

f Dpn

f D1pn
, ~57!

with f D5QVD /(2t). Note that Eqs.~54! and ~55! are to be
solved self-consistently.

In order to calculate averages involving on-site mome
we will also need the LCA renormalization coefficient

L~ t ![^^pi
2&&5

3t

2Q2RN
(

k
(

n52`

` f k
21 k̃n

~pn!21 f k
21 k̃n

.

~58!

It is apparent that bothL andm̃ are divergent in the Ohmic
limit, when k̃n5QGpn/(2t);n. This immediately tells us
that the effect of Drude-like dissipation is to enhance
momentum fluctuations; on the other hand,D decreases
when the dissipation strength is raised, i.e., the coordin
pure-quantum fluctuations are quenched by dissipation.
physical reason for this lies in the fact that the CL mod
considers coordinate coupling with the dissipation bath; fo
thorough discussion see Refs.@10,14#. The dissipation ef-
fects in the thermal averages of quantities depending on
momenta and coordinates, as internal energy or specific h
are therefore unpredictable on a simple basis.

In the nondissipative case the summations overn can be
analytically performed, giving the known results:

D~ t;G50!5
QR

3N (
k

1

Vk
S cothf k2

1

f k
D , ~59!

m̃~ t;G50!5
2R

3N (
k

ln
sinh f k

f k
, ~60!

L~ t;G50!5
3

4QRN (
k

Vk cothf k . ~61!

In order to clarify the way in which the Drude frequenc
characterizes the bath bandwidth, we note that the ab
nondissipative limits are found if the conditionkn!vk

2 is
satisfied for all values ofn and for all modesk. The maxi-
mum value ofkn , obtained forn→`, is k`5g vD . There-
fore, thekth mode interacts negligibly with the dissipatio
a

e

te
he
l
a

th
at,

ve

bath if Vk
2@G VD . Thus the nondissipative limit for the

whole system occurs whenG VD!Vk50
2 ;1. On the other

hand, a crossover should be observed whenG VD becomes
smaller than the squared Debye frequencyVk5p

2 so that the
highest-frequency modes become nondissipative. For
stance, a less ‘‘dissipative’’ behavior is to be expected
quantities that depend weakly upon the low-frequen
modes, such as the nearest-neighbor distance fluctuatio
we will show in the next section. Of course, in the Ohm
limit VD→` all modes do dissipate and such a crosso
cannot exist.

We finally observe that the fundamental formula~18! for
thermal averages translates in the present case to

^Ô&5Š^^O~p,q1j!&&‹eff , ~62!

where the classical-like average with the effective poten
reads

^•&eff5
1

Z S 3t

4pRQ2D N/2E dq~• !e2Veff(q)/t. ~63!

IV. GENERAL RESULTS

With the above formulation the problem is ready for
numerical evaluation of Eqs.~62! and ~63!, that gives the
partition function~settingÔ51) and the thermal averages o
observables. We employed the numerical transfer ma
technique@20#, especially useful in the thermodynamic lim
N→`, by which the numerical part of the calculations
very efficient and can be practically considered exact. T
technique reduces the integrals over the configurations
one-dimensional array of particles to a secular integral eq
tion, whose evaluation is implemented numerically using
discrete mesh of points for the possible values of each de
of freedom. Moreover, the reflection symmetry of the loc
effective potential, can be used to halve the dimension of
transfer matrix.

We performed temperature scans over the region of in
est and calculated several quantities, taking the value ‘‘
site’’ for the extensive ones. From the free energyf (t)5
2N21t lnZ(t) we calculated the internal energyu(t)
5 f (t)2t] t f (t) and the specific heatc(t)5] tu(t)5
2t] t

2f (t) by numerical derivation. In addition we evaluate
the thermal average of the squared site coordinate^q̂i

2&, the
local potential̂ v(q̂i)&, the square nearest-neighbor displac
ment ^(q̂i2q̂i 21)2&, and the square momentum̂p̂i

2&. For
any parameter set (t,Q,R,G,VD) the self-consistent compu
tation of D and hence of the last term ofveff(q), Eqs.~55!
and~56!, was performed in negligible computer time using
continuum termination of then summation.

Since the main point of this work is to study the effect
varying the dissipation parameters, all the quantities repo
here are evaluated for a fixed value of the kink lengthR
55 and using the reference valueQ50.2 for the quantum
coupling, which gives fairly strong quantum effects~the be-
havior vsQ and the continuum limitR→`, which requires a
careful analysis, are discussed in Ref.@18#!. For comparison,
in the figures we also report the classical results, that co
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spond toQ50. We therefore analyze the dependence up
the damping strengthG and the Drude frequencyVD , which
in our scheme fully characterize the interaction between
system and the environment, i.e., the dissipation.

In order to have a significant dissipative coupling with
the modes of our system a sufficiently broad environme
coupling spectrum is needed, i.e., we are interested in va
of the Drude frequencyVD such that VD*Vk5p

2 /G
;4R2/G. Taking VD5100 the condition is thus satisfie
choosing valuesG*1. At the end of this section we als
consider the effect of lowering the value ofVD and check
the predictions made at the end of the preceding section

In Fig. 1 we report the temperature behavior of the me
square fluctuations of the site coordinate^q̂i

2&. At t50, in the
classical case the coordinate lies in the minimaq251 of the
potential~40!, while in the quantum nondissipative case t
value at t50 is smaller,^q̂i

2&5123D.0.84, due to the
quantum fluctuations which occur more likely towards t
barrier rather than the steeper walls, and corresponds to
minima ofveff(q). The classical thermal fluctuations enhan
the same effect and̂q̂i

2& decreases at finite temperature, un
at t*0.5 when kinks are excited in the system (t being the
temperature in kink-energy units! and the coordinate distri
bution begins to extend towards the walls, so that^q̂i

2& starts
to increase. Finally, in the high-temperature limit all curv
collapse into the classical one. Switching on the damp
strengthG the average ofq̂i

2 tends to come back to the cla
sical value: in other words, the pure-quantum fluctuations
the coordinates are ‘‘effectively’’ quenched by dissipatio
as we already remarked and can be observed in Fig. 2, w
the pure-quantum renormalization coefficientD(t)5^^j i

2&&
of Eq. ~55! is reported for different values ofG.

In Fig. 1 one can also observe that before collapsing i
one single curve ast is raised, the finite-G curves get closer
to the quantum result. This can be explained by conside
the expression~55! of the renormalization coefficientD(t)
together with Eq.~57!: a rough estimate tells that dissipatio
is not effective ~in quenching the value ofD) when G
!Gc(t)52tp/Q; for instance, Gc(t50.2);6 and Gc(t
50.5);16, explaining the behavior of the curve forG55.

FIG. 1. Mean-square fluctuations of the coordinate opera
^q̂i

2& vs reduced temperaturet, for different values of the damping
strengthG, at fixed coupling parameterQ50.2, kink lengthR55,
and Drude cutoff frequencyVD5100. Solid line:G50; dotted line:
G55; short-dashed line:G520; long-dashed line:G5100; bold-
solid line: classical result. The latter corresponds also toG→` in
this case.
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Since raising the temperature drives the system towards
classical behavior, this phenomenon is in agreement with
concept that the thermodynamics of a classical system is
affected by dissipation.

On the same basis one can interpret the behavior of
average local potential^v(q̂i)&, which is reported in Fig. 3. It
rises with temperature because of thermal and quantum
tuations and in the classical case at lowt the initial slope is
R/(3A114R2);1/6; when t*0.5 the nonlinearity domi-
nates and the curves show a crossover to a smaller sl
Since the potential depends on the coordinates only, the
clusion of dissipation leads the quantum behavior back
wards the classical curve.

On the other hand, the fluctuations of the momenta
enhanced by dissipation, and the role of the damping effe
is nonpredictable on a simple basis if one considers ther
dynamic quantities where both coordinates and momenta
ter into play. One of these is the specific heatc(t), which is
proportional to the mean-square fluctuation of the Ham
tonian:

c~ t !5~«Kt !22
Š~Ĥ2^Ĥ&!2

‹. ~64!

In Fig. 4 we first report the temperature behavior of thenon-
linear part dc(t) of the specific heat, namely, its total valu
minus the corresponding~dissipative! harmonic contribution,
dc(t)5c(t)2ch(t). This quantity is very sensitive to th

r
FIG. 2. Renormalization coefficientD(t) from Eq.~55!, for dif-

ferent values of the damping strengthG. Parameters and lines as i
Fig. 1. Note thatD(t)→0 whenG→` .

FIG. 3. Average local potential energy^v(q̂i)& vs reduced tem-
peraturet, for different values of the damping strengthG. Param-
eters and lines as in Fig. 1. Note that^v(q̂i)& tends to the classica
behavior forG→`.
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nonlinearity of the system, since its value is zero in a h
monic approximation, and the fact that the PQSCHA reta
all classical nonlinear features is crucial for gettingdc. In-
creasing the strength of the environmental couplingG the
curves can be seen to tend to the classical result, giving
nontrivial outcome of the formalism.

This is remarkable, also in view of the fact that the to
specific heat, shown in Fig. 5, does not behave like its n
linear part. IncreasingG the curves do not tend to the cla
sical one: rather, the classical limit is more rapidly reached
the nondissipative case,G50. In particular, one can observ
in this figure two significative features:~i! the strong depen
dence onG, with the curves crossing att;0.4, and that~ii ! at
large values ofG, the specific heat seems to tend to t
classical result minus one-half,c(t)→ccl(t)21/2. These fea-
tures arise from two different effects.

The first one can be explained by the consequence
dissipation on the linear contribution to the specific heat.
Fig. 6 we report indeed the difference between the diss
tive and the nondissipative harmonic specific he
dch(t,G)5ch(t,G)2ch(t,0), where the crossing of th
curves att;0.4 can be observed: the dissipation bath
pears to absorb energy from the system at lowt and to give
it back when t*0.4. This is therefore a purely harmon
effect, whose origin can be understood thinking of the h

FIG. 4. Nonlinear contribution to the specific heat, defined
dc(t)5c(t)2ch(t) ~times the kink lengthR), vs reduced tempera
ture t, for different values of the damping strengthG. Parameters
and lines as in Fig. 1. ForG→`, dc(t) tends to the classical be
havior.

FIG. 5. Total specific heatc(t) vs reduced temperaturet, for
different values of the damping strengthG. Parameters and lines a
in Fig. 1. Note that forG→`, c(t) tends toccl21/2.
r-
s
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l
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n
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n
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bridization of two oscillators of equal frequencyv, one rep-
resenting the system and the other the bath: the dissipa
arises indeed from such hybridizations, whose effect is ma
mized at resonance. Adding a small linear coordinate c
pling 2g vq1q2 and diagonalizing one gets two diagonal fr
quencies,v65v6g, and in fact it can be seen that th
quantity

dch~ t,g!5ch~v1g!1ch~v2g!22ch~v!, ~65!

with ch(v)5( f /sinhf)2, f 5v/2t, behaves qualitatively like
dch(t,G) in Fig. 6.

In order to understand the second feature of the total s
cific heat, we report in Fig. 7 the thermal average of t
kinetic energy per sitê K̂&5(Q2R/3)^ p̂i

2&. We recall that
increasingG the quantum fluctuations of momenta are e
hanced, as can indeed be seen in Fig. 7 where the curve

s
FIG. 6. Effect of the dissipation strength on the harmonic co

tribution to the specific heatdch(t,G)5ch(t,G)2ch(t,0) vs reduced
temperaturet, for different values of the damping strengthG. Pa-
rameters and lines as in Fig. 1.

FIG. 7. Average kinetic energŷK̂& vs reduced temperaturet,
for different values of damping intensityG. Parameters and lines a

in Fig. 1. One can see that^K̂& diverges forG→`, while it be-
comes flatter and flatter.
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reaches more rapidly the classical limit is the nondissipa
one, as it also occurs for the specific heat in Fig. 5. Howe
while ^K̂& increases with damping, its slope decreases
shown in the upper part of Fig. 8, where we compare
contributions to the specific heat arising from the kinetic a
the interaction parts of the Hamiltonian, namelycK(t)
5] t^K̂(t)& and cV(t)5] t^V̂(t)&. When G increasescK(t)
rises more and more slowly towards the classical value
as if the kinetic specific heat were quenched by dissipat
while cV(t) tends to the classical curve. The combined eff
is therefore that for largeG the total specific heat~Fig. 5!
tends to its classical interaction part and seems to be lac
the kinetic contribution.

The condition for^K̂& and cK(t) to reach their classica
limits (;t/2 and;1/2, respectively! is easily found by writ-
ing, from Eq.~58!, the thermal average of the kinetic ener
as

^K̂&5
t

2
1

t

N (
k

(
n51

` f k
21 k̃n

~pn!21 f k
21 k̃n

, ~66!

and using Eqs.~57! and ~54!. At the end the following con-
dition is obtained:

t@
Q

2A3
A2R21G VD, ~67!

which for the valuesR55,Q50.2, andVD5100 considered
here amounts tot@0.6A0.51G, which is well verified from
our numerical outcomes.

FIG. 8. Kinetic and interaction contributions to the specific he

namely,cK(t)5] t^K̂& andcV(t)5] t^V̂&, vs reduced temperaturet,
for different values of damping intensityG. Parameters and lines a
in Fig. 1. Note thatcK(t)→0 for G→`.
e
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Finally, let us discuss the role of the cutoff frequen
VD . As we have seen before, the mechanism of the coup
between the system and the environment can be traced b
in a simplified scheme, to the hybridization of oscillato
This process is effective only if the frequencies of the os
lators are close to resonance. So the modes$Vk% of the sys-
tem, which couple with the environment, are those which
not exceed the cutoff frequencyAG VD, as discussed at th
end of Sec. III B. This gives rise to interesting effects: as
instance, in Fig. 9 we analyze the effect of varyingVD on the
averages of the on-site coordinate^q̂i

2& and of the nearest
neighbor displacement

^~ q̂i2q̂i 21!2&5^~qi2qi 21!2&eff1D~ t !. ~68!

The latter involves the nearest-neighbor renormalization
efficientD52(Cii 2Ci ,i 21), which is expressed as

D~ t !5
Q2R

3tN (
k

(
n51

`
2~12cosk!

~pn!21 f k
21 k̃n

. ~69!

Comparing with Eq.~55! it appears that the contributio
from the low-frequency modes is less relevant due to
k-dependent factor, allowing one to expect that when
cutoff frequency becomes smaller than the Debye freque
Vk5p;2R, i.e., when

, FIG. 9. Thermal averageŝq̂i
2& and ^(q̂i2q̂i 21)2&, vs reduced

temperaturet, for different values of the Drude frequencyVD , at
fixed couplingQ50.2, kink lengthR55, and damping strengthG
520. Solid line: VD51; dotted line:VD53; short-dashed line:
VD510; long-dashed line:VD530; dot-dashed line:VD5`
~Ohmic limit!; bold-solid line: nondissipative result, i.e.,G50 or
VD50. ForVD→0 the behavior tends to the nondissipative resu
since the bath bandwidthAG VD becomes too narrow and onl
low-frequency system modes can dissipate. The effect is m
stronger for the nearest-neighbor displacement~see text!.
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VD&4R2/G, ~70!

the effect of dissipation on̂(q̂i2q̂i 21)2& should decrease
more pronouncedly than for̂q̂i

2&. This is indeed apparen
from Fig. 9, where the damping strength is set toG520 and
the above condition readsVD&5.

V. CONCLUSIONS

In this paper we have derived thepure-quantum self-
consistent harmonic approximationformalism for an inter-
acting many-body system with Caldeira-Leggett dissipat
and nondiagonal quadratic kinetic energy. The PQSCHA
lows one to reduce quantum mechanical thermodynamic
culations to a classical-like configuration integral, where
the present case also the quantum effects of dissipation
included. In order to deal with many degrees of freedom
necessarylow-couplingapproximation has been introduce
The latter, if the system’s symmetries are exploited, res
in very simple expressions for the renormalization coe
cients appearing in the theory. This is shown in detail for
case of translation symmetry.

The rest of the paper is devoted to the application of
framework to the discretef4 one-dimensional field, whos
strong nonlinearity results in the characteristic kink exci
tions which play a determinant role in the thermodynami
A Drude-like spectrum of the environmental coupling is ch
sen for dissipation, and its influence on several quantitie
analyzed when the two characterizing parameters, i.e., d
pation strength and bandwidth, are varied. The PQSCHA
unique tool for dealing with such a system, since any
proximate theory must retain the strong nonlinearity, wh
has a mainly classical character, and this rules out conv
tional perturbative approaches. In general, the inclusion
dissipation through coordinate coupling with the enviro
ment results in quenched quantum fluctuations of the co
dinates, while those of the momenta are emphasized. In
esting and nontrivial behavior is found for the specific he
since the prevalence of either of the mentioned effects is
predictable on simple grounds.

The method proves to be very useful for studying o
model system, and we believe it will find several applicati
in physical contexts where both quantum and dissipative
fects play an important role.

APPENDIX A: THE TRIAL DENSITY MATRIX

In this appendix we report the details of the calculatio
which lead to the results reported in Sec. II B.

Inserting the proper constraints in Eq.~9! and, using the
explicit form ~13! of the trial action in terms of Matsubar
variables, one has

r̄0~q9,q8;q̄!5 lim
«→0

e2bw(q̄)

F«
R D@q~u!#d„q̄2q̄ @q~u!#…

3d„q~«!2q8…d„q~b2«!2q9…

3e2b( txnFnxn1 tynFnyn), ~A1!

where the path-integral measure is given by Eq.~12!. Rep-
resenting thed functions that fix q8 and q9 as d(q)
n
l-
l-

re
e
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e

e
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.
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is
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ot
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5(2p)2N*dv e2 i tqv, taking the explicit expressions o
q(«) and of q(b2«) from Eq. ~11!, and using the genera
Gaussian quadrature formula

E dx e2 txFx/21 i txq5
~2p!N/2

AdetF
e2~ tqF21q!/2, ~A2!

one can integrate over the variablesxn andyn , obtaining

r̄0~q9,q8;q̄!5S m

2pb D N/2e2bw(q̄)

m~ q̄!
lim
«→0

1

F«
E dv1dv2

~2p!2N

3e2~ tv1C«v11 tv2S«v2!/2ei [ tv1j1 tv2z] ,

~A3!

where j5 1
2 (q91q8)2q̄ and z5q92q8, v15v91v8 and

v25 1
2 (v92v8); furthermore, the functionm(q̄) is defined

as

m~q!5 (
n51

`

ln
detFn~q!

~mnn
2!N

, ~A4!

and

C«5
2

b (
n51

`

Fn
21cos2nn«, ~A5!

S«5
8

b (
n51

`

Fn
21sin2nn«. ~A6!

Using again Eq.~A2!, the reduced density can then be wr
ten as

r̄0~q9,q8;q̄!5S m

2pb D N/2e2bw~ q̄!

m~ q̄!
lim
«→0

1

F«

3
1

~2p!NAdetC« detS«

e2~ tjC«
21

j1 tzS«
21

z!/2.

~A7!

In order to perform the limit, we have to expandS« for small
«. Let us first consider the associated matrix

S̃«5A21S«A215
8

b (
n51

`

@nn
21Qn#21sin2nn«, ~A8!

with Qn5A@B21Kn#A. Subtracting from the exactly sum
mable series@21#

g«[
8

b (
n51

`
sin2nn«

nn
2

52«S 122
«

b D , ~A9!

that is verified foru«u<b/2, we have
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g«2S̃«5
8

b (
n51

`

Qn@nn
21Qn#21

sin2nn«

nn
2

. ~A10!

Provided thatQn /na→0 for n→` and for somea,1 this
series and its first and second derivatives are uniformly c
vergent: therefore the limit«→0 can be taken under th
summation yielding the Taylor expansion

g«2S̃«5«2
8

b (
n51

`

Qn@nn
21Qn#211O~«3! ~A11!

and finally givingS̃«52«(122«L̃)1O(«3), with

L̃5
1

b (
n52`

`

Qn@nn
21Qn#21. ~A12!

Then, we also have detS«.(2«/m)N and S«
21.(A22

12«L)/2«, with L5A21L̃A21, and in view of Eq.~10! the
limit for «→0 in Eq. ~A7! can be evaluated, leaving
s,
,

n-

r̄0~q9,q8;q̄!5S m

2pb D N/2

e2bw(q̄)2m(q̄)

3
1

A~2p!N detC
e2~ tjC21j1 tzLz!/2.

~A13!

Going over to the Weyl symbol@16,17# corresponding to the
reduced density matrix, one obtains

r̄0~p,q;q̄!5~2p!NS m

2pb D N/2

e2bw(q̄)2m(q̄)

3
e2 tjC21j/2

A~2p!N detC

e
tpL21p/2

A~2p!N detL
. ~A14!

This Gaussian distribution forj[q2q̄ andp determines ex-
actly the double-bracket average of Eqs.~19! and~20!, and it
is then easy to derive Eq.~18!.
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